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Temperature distribution in a bi-material body with a line of 
cracks under uniform heat flow 
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Abstract. The temperature distribution in a bi-material body with a line of cracks at the interface under uniform 
heat flow is solved. The boundary value problem is reduced to the solution of a singular integral equation of Cauchy 
type whose solution is given by Muskhelishvili. Temperature distributions for the case of a single crack, and for the 
case of two collinear cracks are given. 

1. Introduction 

The problem of finding the temperature distribution in an infinite medium with a line of 
cracks under uniform heat flow has been considered by Sih [1]. He reduced the solution of 

the boundary value problem to the solution of the Hilbert problem [2]. Temperature  
distribution and heat flux in the infinite medium with a single crack, with two collinear 
cracks, and infinite collinear cracks were given. It was shown that near the crack tip the heat 

flux exhibits the inverse square-root singularity in terms of the radial distance from the crack 
tip, while the temperature remains bounded. As observed by Sih [1], the problem was 

motivated by the need for the temperature distribution in a body with cracks in fracture 
mechanics when temperature effects are considered. When a uniform heat flow is disturbed 
by the cracks in the body, there occurs a local intensification of the temperature gradient 
near the crack tip. Associated with this is the rise in thermal stress near the crack tip which is 
often the cause of failure. The problem is thus of practical interest. 

In this paper, the problem of temperature distribution in a bi-material body with a line of 
insulated cracks at the interface under uniform heat flow is considered. The temperature 
distribution in a bi-material body without a line of cracks is first determined. The boundary 

value problem under consideration is then reduced to the problem of determining the 
temperature  distribution in the bi-material body where heat flux is prescribed at the crack 
surfaces. The Fourier transform is used in the analysis. The problem is reduced to the 
solution of a singular integral equation of Cauchy type which can be solved by the method of 

Muskhelishvili [2]. Temperature  distributions for the case of a single crack, and for the case 
of two collinear cracks are given as examples. It is shown that the results reduce to those of 
Sih [1] when the bi-material body is reduced to the single material body. 

2. Temperature distribution in the bi-material body without cracks 

Consider an infinite bi-material body consisting of region D~ in the upper plane y > 0 and 

region ~2 in the lower plane y < 0  with coefficients of thermal conductivity K~ and K 2, 
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F/g. I. Infinite bi-material body without cracks. 

respectively, Fig. 1. The interface of the regions is perfectly bonded and heat can be 
transferred through it. 

Let the temperature distribution in the region ~i  be 

T~ = q(x cos a + y sin a ) ,  (1) 

where q is the uniform temperature gradient and let the temperature distribution in l-I 2 be 
given as 

T~ = alx  + a2y . (2) 

These satisfy the two dimensional Laplace equation 

V2T = 0 .  (3) 

The constants a~ and a 2 are determined from the continuity of the temperature at the 
interface y = 0 given by 

T~ = T~ (4) 

and the continuity of the heat flux at the interface given by 

OT~ OT~ 
K1 0y -K2 Oy (5) 

which yield 
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K 1 
a~ = q cos a ,  a 2 = - -  q sin a .  

K9 

The temperature distribution in ~'~2' Y < 0 is then given by 

( K1 ) 
T ~ = q  x c o s a + - -  y s i n a  . (6) 

K 2 

3. Formulation of the problem 

Let the interface of the regions y = 0 have a line of insulated cracks L = L 1 + L 2 + • • • + Lp ,  

Fig. 2. At infinity, region fll has temperature distribution, T T given by Eq. (1), and region 
~'~2 then has the temperature distribution T~ given by Eq. (6). 

Let the temperature distribution in region fli be T;,  i = 1,2 which must satisfy the Laplace 
equation 

7 2 ~ = 0  (7) 

with f, = T I and the following conditions: 

r 
T , ( x , O + ) =  T z ( x , O - ) ,  x y ~ L ,  

0T;(x,  0+ )  O T ~ ( x , O - )  
Kl Oy -- K2 Oy , x y~ L , 

d 

(8) 

(9) 

Y 

T? 

T2 
Fig. 2. Infinite bi-material body with a line of cracks. 
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OT;(x,O+) Or;(x, 0-) 
Oy Oy 

=o, x ~ L ,  (lo) 

T ; -  TT~0, T 2 -  T~---~0 a s  x 2 + y 2 - - - ~  o~ . (11) 

In the above, (8) and (9) are the continuity conditions for the temperature and the 
temperature gradient at the interface, respectively; (10) expresses the fact that the crack 
surfaces are insulated; (11) shows that the temperature in the body away from the cracks 
approaches that of the uncracked body. 

Let T; = T i + T*, i = 1, 2, where Ti is the disturbance temperature due to the presence of 
the cracks, and is assumed to be bounded near the crack tips and to vanish at infinity. It 
follows that T i satisfies the Laplace equation (7) in l) i. The conditions (8), (9), (10), and 
(11), respectively, become 

Tl(x , 0+) = T2(X , 0--), x f Z L ,  (12) 

OTI(X, 0+) OT2(x, 0 - )  
K~ Oy -- K2 Oy , x ~ L  , (13) 

OTI(X , 0+) 
Oy 

- q sin a , x E L ,  (14) 

OT2(x , 0 - )  K 1 

Oy K 2 
qsin a ,  x @ L ,  (15) 

T 1 - - - > 0  , T2-->0 at infinity. (16) 

Conditions (14) and (15) yield 

aT,(x,  0+) OT2(x, 0 - )  
K1 Oy - K2 Oy , x E  L ,  

which together with (13) imply 

OT,(x, 0+) a T2(x, 0 - )  
for y = 0 and all x .  (17) K1 Oy - -  K2 Oy 

4. Solut ion  o f  the problem 

Introduce the Fourier transform 

f jT( ~, y) = -~ f( sc ' y) eie~ dx 

and its inverse 

1 f ~  e_i~: x f(x,  y )= ~ -=)7( ~' Y) dE. 

Application of the Fourier transform [3] to the Laplace equation (7) yields 
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( d2 ) 
~y2 --~ 2 J'(sc, y) = 0,  

which has the solution 

f ( s  c, y) = A 1(~) e-l~lv q- Bl (s  c) et~kY • 

Condit ion (16) is satisfied if one chooses 

TI(~, Y) = A(~)  e -I-<~' , 

;?2(s ~, Y)= B(s~) elet" 

and obtains 

'f\ Tl(X, y) = ~ A(s  ~) e I_~ly-ix_e ds~, 

1 L 
Tz(x, y) = ~ B(~:) e Ieb' ixe dsC, 

Substituting these into condition (17), one obtains 

B ( { : )  = _ K ,  A ( { : )  

and finally 

T1(x, y) = ~ A(~:) e lely-i,e dse, 

T2(x ' y )_  K 1 1 f~. ~2 2~r A(~)e  I~b' ~X~ d~. 

Condit ion (12) gives 

e_~X e { 0 ,  x ~ L  
1+~72 ~ A({:) d { : :  AT(x), x C L '  

where 

~ r ( x )  = r , ( x ,  o +) - r2(x, o ) .  

It follows from (23) that 

1+ A(,~)= AT(x) e ~,edx, x ~ L .  

Substituting (24) into (21) and (22) gives 

T 1 (x, y) - - -  K2 1 AT(t) dt e-lelb, I i(.,- ,)~ d{: 
Kj + K 2 2~" - ~  ' 

367 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 
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--K1 1 fLAT(t)dt f~_ e-rellyl-i{.-,)¢ d~. T2(x' Y ) -  K, + K~ 2 2rr 

The second integral in these equations can be integrated and, as a result, one obtains 

I< 2 y ~ AT(t) 
TI(X' Y)-- KI + K err  (x-~- f -+ y2 dt, y > 0 ,  (25) 

K 1 y f,, AT(t) 
T2(x' Y)-- K] + K2 rr ( x - 7 ~ +  y2 dt, y < 0 .  (26) 

:An alternative solution of the problem leading to these equations without the use of Fourier 
transform is given in Appendix 1. 

It remains to determine the temperature difference AT over the cracks from either of the 
conditions (14) or (15). For this, let 

2 K  2 
T l ( x , y ) - - - R e ~ ( z ) ,  y > 0 ,  (27) 

K 1 + K 2 

2 K  1 
T 2 ( x , y ) - - - R e ~ ( z ) ,  y < 0 .  (28) 

K 1 q- K 2 

where z = x + iy and qb(z) is defined by the Cauchy integral 

1 f AT(t)dt. ( 2 9 )  
* ( z )  = ,. t -  z 

Since ~(z) is analytic outside L, the Cauchy-Riemann equation 

O R e  ~ ( z )  = - O Im ~ ( z )  
Oy Ox 

holds. The boundary condition (14) then yields 

O Im ~(x + i0) - K1 + K2 0~ 2K 2 q s i n a ,  x E L .  (30) 

Here, the limit value qb(x + i0), x E L, is found from the Plemelj's formulas for Cauchy 
integral (29) [2, §17]. Integration of the boundary condition (30) with respect to x yields the 
following: 

1 ( A T ( t )  K 1 + K 2 
JL d t = i - - x q s i n a + C ~ ,  x, t E L ,  (31) 

rrl t - x K 2 

where the constant C~ applies when x ELj ,  j = 1, 2 . . . . .  p, and the integral on the left 
stands for the Cauchy principal value. 

Equation (31) is a singular integral equation of Cauchy type whose solution is given by 
Muskhelishvili [2, §88-§90]. The solution of (31), which is bounded at the crack tips, can be 
written as follows: 



a T ( x )  - 
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[R(x)]'/2 fL f(t) dt JR(x)] '/2 
¢ri [R(t)ll/2(t - x) + rri E cj ,,2(t j : l  , [R(t)] - x )  ' 

x E L ,  
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(32) 

where 

f(t) - 
i(K 1 + K2) 

K 2 
tq sin c~ 

and 

P 

R(z) : I]  ( z -  a j ) ( z -  bj) . 
]=1 

Here aj and bj denote the end points of the crack L / a n d  [R(t)] 1/2 is understood to be the 
limiting value of [R(z)] 1/2 as z---~ t E L in Im z >0 .  The constants Cj satisfy the equations 

P 

am,,C, ,+Am=O (m =0 ,  1,2 . . . . .  p - I ) ,  (33) 
n=l 

where 

fL t m dt ;L tmf(t) dt 
am,, = ,, [R(t)],/2 , Am = ~ i 7 ~ .  (34) 

With A T found from (32), the temperature distribution in both regions can be found from 
(25) and (26). 

5. The problem of a single crack 

Consider the problem of a single crack Ix] < a at the interface. For this problem, letting p = 1 
in (32) and taking [R(t)] 1/2= i(a 2 -  t2) 1/2, Eq. (32) becomes 

_ q s i n a  t¢ I + K  2 (a 2_x2)I/2 ( "  t d t  AT(x) 
rr K 2 )-a (a 2 - t2)'/e(t - x) 

+ C1 (a 2 -  x2) 1/2 f ~  d t  
~'i ,, (a e - t2) ' /2(t-  x) ' Ixl < a .  (35) 

Using the results [4, form. 15.2 (21)] 

~'  dt = { o S g n ( x ) / ( x 2 -  a2)1'2 I x l > a  

" ( a  2 - -  t2)l/2(x - t) Ix I < a 

Equation (35) becomes 

K I + K  2 (a z _ x 2 )  1/2, 
K 2 

AT(x) = q sin c~ - -  Ixl < a .  (36) 
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Equa t ions  (27) and (28) then yield 

T l ( x , y ) = 2 q s i n a R e ~ l ( z  ) ,  y > 0 ,  (37) 

K 1 
T 2 ( x  , y ) = 2 q s i n  a - -  Red~l (z  ) , y < 0 ,  

1<2 
( 3 8 )  

where  

1 f ]  (a 2 - -  t 2 )  1/2 
@l(z) = 2 - ~  ~ t - - - z  d t .  (39) 

It is shown in Append ix  2 that  

1 a2)1/2 
* , ( z )  : [ ( z  2 - - z ] ,  (40) 

and finally 

T l(x, y) = - q y  sin a + - -  
q sin a {[(X 2 _ y2 _ a2)2 + 4 x 2 f ] l / 2  _ (x 2 _ y2 _ a2)}1/2, y > 0 ,  

(41) 

T2(x ' Y) K, 
= - -  qy sin a 

N' 2 

y < 0 .  

K 1 q sin a _ y:  a 2 ) 2  i /2 
K2 ~ {[(x2 - + 4 x 2 y l  - -  ( X  2 - -  2 1/2 y - a2)} , 

(42) 

The  t empera tu re  distribution in the body becomes  

T~(x, y) = qx cos a + - -  
q sin a {[(x 2 _  y 2 _  a2)2 + 4x2y211/2_ (x 2 _  y 2 _  a2)} , /2 ,  y > 0 ,  

(43)  

! 
T2(x , y)  = qx cos a 

K x q sin a 2 a2)2 1/2 _ y2 1/2 
K 2 V~ { [ ( x 2 -  y - + 4x2y2] - (x2 - a2)) ' y < 0 "  

(44) 

It is easily seen that  these reduce  to that  given by Sih [1] if one sets K I = K 2. No te  that  the 
first t e rm on the right hand side of  Sih's expression [1, form.  (22)] must  be multiplied by a 

factor  sgn(y) .  

6. The  prob lem of  two coll inear cracks  

Let  there  be two coll inear cracks a < Ixl < b at the interface y = 0. For  this p roblem,  in (32),  

t a k e p = 2  and 

JR(x)] 1/2 = i[(b 2 -  xZ)(x 2 -  a2)] 1/2 sgn(x) ,  a < ]x I < b .  

For  this case, the first te rm in (32) involving the integral 
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(f / f  fj') t dt : ~[ + [R(t)]77~t - x) - 2 i x  
tdt 

[(b 2 -  t2)(t 2 - a2)]'/2(t 2 _ x 2) ' a<lxl<b 

is shown to vanish by using the relation [4, form. 15.2 (32)] 

~' tdt  
f ,  [(b 2 - t2)(t 2 --a~)] ' /2(t  2 -  x 2) 

:{O/2[(b2_x2)(a2_x2)]  ,,'2 

~/2[(X 2 _ b2)(x 2 _ a2)]-1/2 

Ixl < a 

a<lxl<b 
Ixl > b .  

The constants C I and C 2 are found to be 

C, = - C 2 = i - -  
K, + K 2 7rbq sin a 

K 2 2 K  

and the second term in (32) now takes the form 

C] ld/[(t = 2iC,x dt 
j : l  ., [R(t)] - x) [(b 2 - t2)(t 2 - aZ)]l/2(t 2 - x 2) " 

(45) 

The integral on the right-hand side can be found from [5, form. 218.02, 415.01] as 

h dt 
, [(b -- t2)(t 2 ---;2)]1/2(t2 _ X 2) 

KZ(A(x), k) 
Ix l [ (b  e - x 2 ) ( x  2 _ a2)l 1/2 , a<[xl<b, 

where Z(A, k) is the Jacobian zeta function defined by [5, form. 140.01] 

E 
Z(A, k) = E(A, k) - ~ F(A, k) 

and K and E denote  the complete elliptic integrals of the first and second kind, respectively 
[5, form. 110.06, 110.07], while F(A, k) and E(A, k) with 

k - ( b 2  - a 2 ) 1 / 2  

b 

b _ X2] 1/2 
sin A(x) = \-~2~_ a2 J 

are the Legendre ' s  incomplete elliptic integrals of the first and second kind, respectively [5, 
form. 110.02, 110.03]. 

Finally one obtains 

+ K 1 K 2 
A T ( x ) -  bq sin aZ(A,  k ) ,  a < Ix[ < b .  (46) 

K 2 

By letting a--~0, i.e. letting k - + l ,  and using the relations [5, form. 111.05] 

E(1) = 1,  K(1) = m, 

and [5, form. 111.04] 

E(A, 1) = sin A ,  
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the case of a single crack of length 2b is recovered. Equation (46) takes the form 

K 1 + K 2 AT(x)  = q sin a - -  ( b  2 -- X2) 1/2, Ixl < b ,  
/(2 

which is seen to be that given in (36), as it should be. 
From (27) and (28)with AT(x) given by (46), one can write 

T~(x, y) = 2bq sin a Re (I)2(Z) , y > 0 ,  (47) 

Tz(x , y) = 2K1 bq sin a Re (I)2(z) , y < 0 ,  (48) 
/(2 

where z = x + iy and 

l ( f f  f))Z(A(t),k) (I)2(z) = 2-~  + t ---z  dr .  (49) 

It is shown in Appendix 2 that 

1[ 
C ( z ) -  , (50) 

where 

l b 2 ) 1 / 2 ( Z  2 _ a2)1/2  dt . ( 5 1 )  
G(z)  = - -K z(z  2 - (b 2 _ t2),/2(t 2 _ a2)l/2(t 2 _ z 2) 

The function G(z) as given above can be readily evaluated by numerical integration. 
Equations (47), (48) and (50) then yield the temperature distribution in the body as follows: 

T't(x, y) = q[x cos a + b sin a Im G(z)] ,  y > 0 ,  (52) 

[ ] T 2 ( x , y ) = q  x c o s a + - - b s i n a l m G ( z )  , y < 0 .  (53) 
if2 

It should be mentioned that G(z) is expressible in terms of the complex Jacobian zeta 

function, namely 

G(z)  = i s g n ( y ) Z ( A ( z ) ,  k) 

and hence 

T ~ ( x , y ) = q [ x c o s a + b s i n a R e Z ( A ( z ) , k ) ] ,  y > 0 ,  (54) 

, [ ] T 2 ( x , y ) = q  x c o s a  b s i n a R e Z ( A ( z ) , k )  , y < 0 ,  (55) 
/(2 

Using the results given in [4, form. 115.01], it is easily shown that 



Re Z(A(z) ,  k) = E(/3, k) + 

with 
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k 2 sin/3 cos/3 sin2y (1 - k 2 sin:/3) 1/2 E 
2 k 2 cos Y + sin2/3 sin2y K F(/3, k) (56) 

s i n A ( z ) =  b2 , A ( z ) = 0 + i 4 , ,  

where the square root (b 2 - Z2) 1/2 stands for the principal value i.e. Re(b  2 - -72) 1/2 > 0 ;  the 

parameters 3' and/3 are related to 0 and 4' by the relations 

cosh ~b sin 0 = 

sinh ~b cos 0 = 

sin/3 (1 - k '2  s i n 2 " y )  1/2 

cos2y + k 2 sine/3 sin2y ' 

cos /3 cos y sin y (1 -- k 2 sin2/3) 1/2 

COS2y + k 2 sin2/3 sin2y 

k ' 2  + k 2 = 1 . 

The temperature distribution as given by (54) and (55) with (56) is less suitable for 
numerical computation. By letting K 1 = K2, the results for the case of identical materials is 
recovered. It appears that there is an error in the sign of the result given by Sih [1, form. 
(29)]. 

7. Concluding remarks 

The solutions Tl(X , y) and Tz(x, y) given by (25) and (26), respectively, for a bi-material 
body with line of cracks under uniform heat flow obtained here are basically identical with 
those of Sih's [1] solutions for a homogeneous infinite medium. The difference lies in the 
multiplicative constants 2Kz/(K 1 + K2) and 2K1/(K l + K2). The temperature distribution in the 
body T;(x,  y), y > 0 is identical to that for a homogeneous body given by Sih [1], while the 
temperature distribution T2(x, y), y < 0 differs from that of Sih [1] by a factor K~/K 2. 

Appendix 1 

An alternate solution of the boundary value problems for T] and T2, with boundary 
conditions (12)-(16),  leading to (25) and (26) without the use of Fourier transform is given 
here. 

The boundary value problem can be reduced to a Dirichlet problem and a Neumann 
problem for the Laplace equation in the half-plane y > 0. Introduce the linear combinations 

U(x, y)= Tl(x , y ) -  T2(x , - y ) ,  y > 0 ,  (57) 

V(x, y ) =  KITI(x , y )+ K2T2(x , - y ) ,  y > O ,  (58) 

then U and V must satisfy the Laplace equation in the half-plane y > 0, and the boundary 
conditions 
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0, x ~ L  (59) 
U(x,O)= AT(x), x@L 

obtained from (12) and 

OV 
- - ( x , 0 ) = 0  for al lx (60) 
Oy 

from (17). 
The solution of the Dirichlet problem for U is well known: 

U(x, y)= y fL AT(t) 7r (x --t--~-+ y: d t ,  y > 0. (61) 

The solution of the Neumann problem for V is trivial: 

V(x, y ) =  K1TI(X , y)+ K2T(x, -y)=--O, y~O.  

Equations (62) and (57) with (61) yield the solutions for T 1 and T 2 as follows: 

(62) 

K2 Y fL AT(t) 
TI(x' Y ) -  KI "-~- K-- 2 fi" (x -_-~ + y a dt, y > 0 ,  (63) 

KI Y fL AT(t) T2(x' Y) -  K1+ K ~ 7r (X---~+ y e dt ,  y < 0 .  (64) 

Appendix 2 

The Cauchy integrals (I)I(Z) and dP2(z ), defined in (39) and (49) respectively, are determined 
here. 

To evaluate ~l(z),  consider the integral 

( w  2 _ a2)1'2  
11 . . . . .  dw , 

C W - - Z  
(65) 

where C is the path shown in Fig. 3. The branch of the f u n c t i o n  ( w  2 - a2) 1/2 is chosen in 
such a way that (w 2 - a2) 1/2 coincides with the positive square root if w is real and >a,  and 
that the function (w 2 - a2) 1/2 is analytic in the complex plane with a branch cut along the 
segment [ - a ,  a]. The integrals along the circle C~ vanish as e--~ 0, while 

~c (W2 --  a2)1/2 dw---~2~riz as R - - ~ .  
R W - - Z  

Application of the residue theorem then yields 

1 a2 ) i /2  (I~l(Z) = ~ [(Z 2 -- -- Z ] .  (66) 

To evaluate (I)2(Z), consider the general integral 
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Y 

- -  i 
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X 

F i g .  3 .  C o n t o u r  for  t h e  i n t e g r a l  1~. 

I, = ~c G(w)  d w ,  (67) 
" W - - Z  

where C is the path shown in Fig. 4, and where the function G(w) is required to be analytic 
in the complex plane with branch cuts [ - b ,  - a ]  and [a, b]. The integral can be evaluated 
either directly or using the residue theorem, with the result 

12 = + . . . .  . 
t - z  :R w - z  

Here,  G~(t )  = G(t +- i0), a < Itl < b, denote the limit values of G(w) on the upper and lower 
sides of the branch cuts. 

The function G(z)  is chosen as follows: 

- 1  /2(z 2 . . . .  dt (69) GU) = ~ (£  - a2) l - b ~ ) ' " 2 ( [  + ( b  2 _ t2),%~:~ a 2 ) , % _  ~) ,  

where the square r o o t s  ( z  2 - b2) 1/2 and (z 2 - a2) I/2 are defined in the usual manner. In (69), 
the product (z 2 - b2)~/2(z 2 - a2) ~/2 and the integral that follows are analytic in the complex 
plane with branch cuts [ - b , - a ]  and [a, b]. Thus, the function G(z)  chosen is analytic 
except for branch cuts I - b ,  - a ]  and [a, b]. The behavior of G(z) as z--~oo is found to be 
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Y 

_ i L 

a b 

Fig. 4. Contour for the integral 1 2  . 

[ ( f : / f , )  d, 1 G(z)  = 2K1 z2[1 + O(z_2)] _ + (b 2 _ t2),/2(t 2 _ a2)1/2 Z 

Z 
= g + O ( z - ' ) ,  (~-->~). 

+ O ( z - 3 ) ]  

From this result it immediately follows that 

lim Cq) G(w) dw = 2~'i z (70) 
R ~  dCR W - -  z b " 

Next,  the limit values G-+(x) = G(x +- i0), a < Ix] < b, are determined.  By means  of Plemelj 's  
formulas  it is found that 

G+(x) -G-(x) 

(f f)) i x2)I/2(x2 ; + (b 2 -  tz)l/z(t fdt-- a2) l /Z( t -  x) - /~ sgn(x)( b 2 -  _ a2) 1/2 

_ 2i ixl(b2 _ x2)l/Z(x 2 _ a2),/2 f ;  dt  
K (b 2 - t2)l/2(t2 - a2)l/2(t 2 - x 2) 

= 2 i Z ( A ( x ) , k ) ,  a < I x [ < b ,  (71) 

where the integral after (45) was used. 
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Finally, the substitution of (70) and (71) into (68) yields the following result: 

~ ( f  ; f,") Z (A( t ) , k )  1 [  z ]  q b z ( z ) = ~  + t - - - z  d t = ~  G ( z ) - - ~  . (72) 
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